Chemistry 40S

Formulas

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$n=\frac{m}{m_{R}}$
$C=\frac{n}{V}$
$n=\frac{\# \text { of particles }}{N_{A}}$
$n=\frac{V}{m_{V}}$
$\Delta H=H_{\text {products }}-H_{\text {reactants }}$
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$p H=-\log \left[H_{3} O^{+}\right]$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-p H}} \\
& p O H=-\log \left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right]=10^{-p O H}} \\
& p H+p O H=14.00 \\
& \% \text { ionization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]} \times 100 \% \\
& K_{a} \cdot K_{b}=K_{w} \\
& E_{\text {cell }}^{0}=E_{\text {ox }}^{0}+E_{\text {red }}^{0} \\
& Q=I \cdot t
\end{aligned}
$$

$$
n_{e^{-}}=\frac{I \cdot t}{96500}
$$

Constants

$$
\begin{aligned}
& K_{w}=1.0 \times 10^{-14} \\
& N_{A}=6.02 \times 10^{23}
\end{aligned}
$$

